Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries.
نویسندگان
چکیده
The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology. (1, 2) Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid.
منابع مشابه
Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.
The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and ...
متن کاملسنتز کمپلکس پتاسیم نیکل هگزا سیانو فرات روی پایه زئولیت طبیعی کلینوپتیلولیت به منظور افزایش کارایی جذبی آنها
In this research, the synthesize possibility of Potassium Nickel Hexacyanoferrate complex on natural clinoptilolite, as a support for removal of Cs+ and Sr+2 from radioactive waste, was investigated. Previous work showed that in the high concentration of sodium ion the sorption of these radionuclides on zeolites is low, therefore we enhance the efficiency for the purpose with loading Potas...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کاملAqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode
The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...
متن کاملHighly reversible open framework nanoscale electrodes for divalent ion batteries.
The reversible insertion of monovalent ions such as lithium into electrode materials has enabled the development of rechargeable batteries with high energy density. Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. Here we report that nanomaterials in the Prussian Blue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2011